Limits on the Adaptive Security of Yao's Garbling

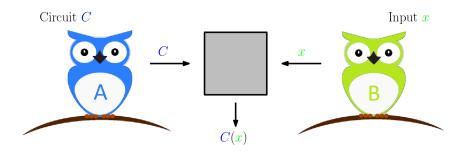
Chethan Kamath, Karen Klein¹, Krzysztof Pietrzak¹, Daniel Wichs²

1 - IST Austria

2 - Northeastern University, NTT Research

イロト 不得 トイヨト イヨト

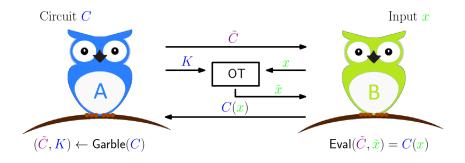
-



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background

Yao's solution [Yao86]:



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

LP09: **selective** security proof (input known ahead of time)

 \Rightarrow adaptive security via *randomly guessing* the **input of length** *n*:

SKE ε -IND-CPA secure \Rightarrow Yao's scheme 2^{*n*} · ε -secure

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

LP09: **selective** security proof (input known ahead of time) \Rightarrow adaptive security via *randomly guessing* the **input of length** *n*:

SKE ε -IND-CPA secure \Rightarrow Yao's scheme $2^n \cdot \varepsilon$ -secure

JW16: **adaptive** security proof for circuits of **depth** *D*:

SKE ε -IND-CPA secure \Rightarrow Yao's scheme 2^D · ε -secure

LP09: **selective** security proof (input known ahead of time) \Rightarrow adaptive security via *randomly guessing* the **input of length** *n*:

SKE ε -IND-CPA secure \Rightarrow Yao's scheme 2^{*n*} · ε -secure

JW16: **adaptive** security proof for circuits of **depth** *D*:

SKE ε -IND-CPA secure \Rightarrow Yao's scheme 2^D · ε -secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao's garbling scheme for circuits with n-bit input, 1-bit output, and depth $D \le 2n$ from an IND-CPA secure SKE incurs a security loss of $2^{\Omega(\sqrt{D})}$.

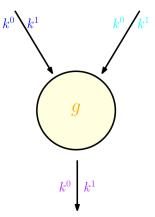
Our results

- only apply to Yao's construction, we do not prove a separation of garbled circuits from one-way functions
 - HJO+16: adaptively secure garbling from one-way functions using "somewhere equivocal" encryption (online complexity increases with the *pebble complexity* of the circuit)

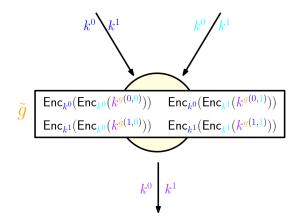
Our results

- only apply to Yao's construction, we do not prove a separation of garbled circuits from one-way functions
 - HJO+16: adaptively secure garbling from one-way functions using "somewhere equivocal" encryption (online complexity increases with the *pebble complexity* of the circuit)
- hold even for **indistinguishability** (a weaker security notion than simulatability) and a **variant of Yao** (JW16) where the output map is sent *online*
 - AIKW13: Yao's original scheme is not adaptively simulatable (for circuits with *large* output)

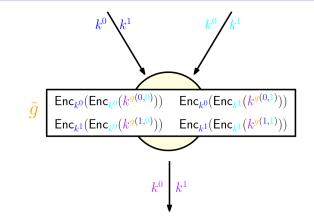
- ロ ト - 4 回 ト - 4 □



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

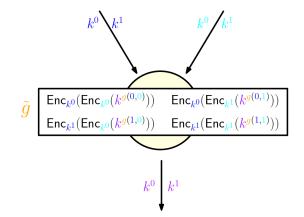


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ



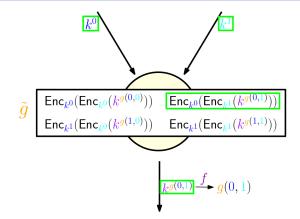
 $\tilde{C} = \{\tilde{g}\}_{g \in C}, \ K = \{k^0, k^1, k^0, k^1, \ldots\}$ can be computed offline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



 $\tilde{C} = \{\tilde{g}\}_{g \in C}, K = \{k^0, k^1, k^0, k^1, \ldots\}$ can be computed offline For $x = (x_1, x_2, \ldots)$: $\tilde{x} = (k^{x_1}, k^{x_2}, \ldots)$ Output mapping: $f = \{k^0 \to 0, k^1 \to 1, \ldots\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

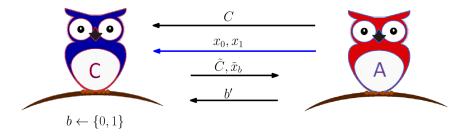


 $\tilde{C} = \{\tilde{g}\}_{g \in C}, K = \{k^0, k^1, k^0, k^1, \ldots\}$ can be computed offline For $x = (x_1, x_2, \ldots)$: $\tilde{x} = (k^{x_1}, k^{x_2}, \ldots)$ Output mapping: $f = \{k^0 \to 0, k^1 \to 1, \ldots\}$

Security Definition for Garbling

selective indistinguishability

(weaker than simulation-based security)

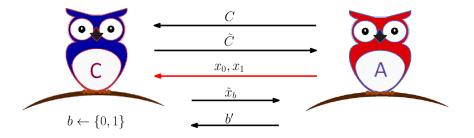


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Security Definition for Garbling

adaptive indistinguishability

(weaker than simulation-based security)



▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao's garbling scheme for circuits with n-bit input, 1-bit output, and depth $D \le 2n$ from an IND-CPA secure SKE incurs a security loss of $2^{\Omega(\sqrt{D})}$.

Define oracles ${\mathcal F}$ and ${\mathcal A}$ such that

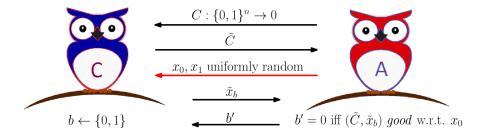
- $\mathcal{F} = (Gen, Enc, Dec)$ is an ideal SKE scheme
- *A* is an (inefficient) **adversary** breaking Yao's scheme, but "not too helpful" in breaking *F*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof Idea: The Adversary \mathcal{A}

adaptive indistinguishability

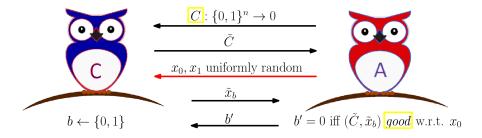
(weaker than simulation-based security)



Proof Idea: The Adversary \mathcal{A}

adaptive indistinguishability

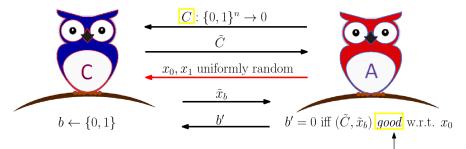
(weaker than simulation-based security)



Proof Idea: The Adversary \mathcal{A}

adaptive indistinguishability

(weaker than simulation-based security)



defined through some **pebble game** on graphs, guarantees that \mathcal{A} succeeds

Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

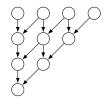
 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

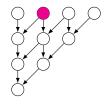


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

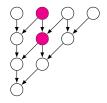


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

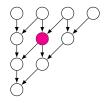


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

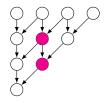


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.



Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

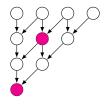


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

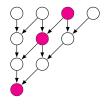


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

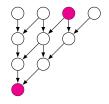


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

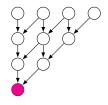


Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.



Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

 \mathcal{P} is *good* if it is reachable with less than *d* pebbles (where $d = \Theta(D)$).

Given (\tilde{C}, \tilde{x}_b) , \mathcal{A} extracts a *pebble configuration* \mathcal{P} on C:

• Check (via brute-force) each garbling table in \tilde{C} , if incorrect (w.r.t. \tilde{x}_b, x_0) assign a pebble.

Consider the following **pebble game**:

 In each step can place/remove a pebble on a node, if at least one of its parents carries a pebble.

 \mathcal{P} is *good* if it is reachable with less than *d* pebbles (where $d = \Theta(D)$).

Lemma (A breaks Yao's scheme)

For appropriately chosen circuit C with high pebble complexity: $\emptyset = \mathcal{P}_0 \leftarrow \mathcal{A}(\tilde{C}, \tilde{x}_0) \text{ good and } \mathcal{P}_1 \leftarrow \mathcal{A}(\tilde{C}, \tilde{x}_1) \text{ bad.}$

Proof Idea: \mathcal{A} is "not too useful"

A[c*]: punctured adversary, IND-CPA challenge ciphertext c* hardcoded and never decrypted

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \rightarrow not useful for any reduction.

Proof Idea: \mathcal{A} is "not too useful"

A[c*]: punctured adversary, IND-CPA challenge ciphertext c* hardcoded and never decrypted

 \rightarrow not useful for any reduction.

Can only distinguish $\mathcal{A}[c^*]$ from \mathcal{A} if $\mathcal{P} \leftarrow \mathcal{A} \text{ good and } \mathcal{P}^* \leftarrow \mathcal{A}[c^*]$ bad.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof Idea: \mathcal{A} is "not too useful"

A[c*]: **punctured adversary**, IND-CPA challenge ciphertext c* hardcoded and never decrypted

 \rightarrow not useful for any reduction.

Can only distinguish $\mathcal{A}[c^*]$ from \mathcal{A} if $\mathcal{P} \leftarrow \mathcal{A}$ good and $\mathcal{P}^* \leftarrow \mathcal{A}[c^*]$ bad.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lemma

 \mathcal{P} and \mathcal{P}^* differ in at most one pebbling step.

 $ightarrow \mathcal{P}$ contains d-1 pebbles (by definition of good)

Proof Idea: \mathcal{A} is "not too useful"

A[c*]: **punctured adversary**, IND-CPA challenge ciphertext c* hardcoded and never decrypted

 \rightarrow not useful for any reduction.

Can only distinguish $\mathcal{A}[c^*]$ from \mathcal{A} if $\mathcal{P} \leftarrow \mathcal{A}$ good and $\mathcal{P}^* \leftarrow \mathcal{A}[c^*]$ bad.

Lemma

 \mathcal{P} and \mathcal{P}^* differ in at most one pebbling step.

 $ightarrow \mathcal{P}$ contains d-1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any \tilde{C} the probability (over uniformly random x_0) that there exists \tilde{x}_b such that \mathcal{P} good and \mathcal{P}^* bad is small.

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any \tilde{C} the probability (over uniformly random x_0) that there exists \tilde{x}_b such that \mathcal{P} good and \mathcal{P}^* bad is small.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any \tilde{C} the probability (over uniformly random x_0) that there exists \tilde{x}_b such that \mathcal{P} good and \mathcal{P}^* bad is small.

- \mathcal{P} contains many pebbles.
- The reduction needs to correctly guess the output of pebbled gates during evaluation $C(x_0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any \tilde{C} the probability (over uniformly random x_0) that there exists \tilde{x}_b such that \mathcal{P} good and \mathcal{P}^* bad is small.

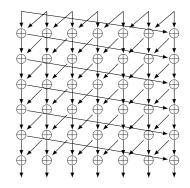
• \mathcal{P} contains many pebbles.

• The reduction needs to correctly guess the output of pebbled gates during evaluation $C(x_0)$.

To guarantee these properties, define C such that

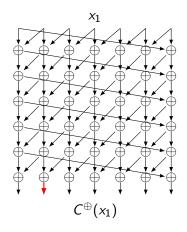
- C has high pebbling complexity $d = \Theta(D)$,
- contains a block of XOR gates, which maintains high entropy, pebbles on this block correspond to guessing x_0 ,
- contains subsequent AND gates as "control" mechanism, pebbles on these gates mean that some guess was incorrect.

 C^{\oplus} ...tower graph of depth d



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

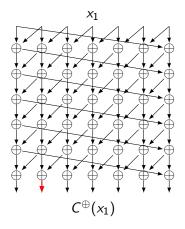
 C^{\oplus} ...tower graph of depth *d* Implement gates as XOR $\Rightarrow C^{\oplus}(x_0) \neq C^{\oplus}(x_1)$



▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 C^{\oplus} ...tower graph of depth *d* Implement gates as XOR $\Rightarrow C^{\oplus}(x_0) \neq C^{\oplus}(x_1)$

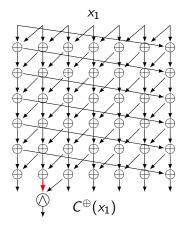
AND gates are *asymmetric* w.r.t. input \rightarrow use them as **control gates**:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 C^{\oplus} ...tower graph of depth *d* Implement gates as XOR $\Rightarrow C^{\oplus}(x_0) \neq C^{\oplus}(x_1)$

AND gates are *asymmetric* w.r.t. input \rightarrow use them as **control gates**:

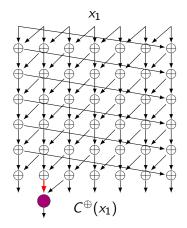


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 C^{\oplus} ...tower graph of depth *d* Implement gates as XOR $\Rightarrow C^{\oplus}(x_0) \neq C^{\oplus}(x_1)$

AND gates are asymmetric w.r.t. input

 \rightarrow use them as **control gates**: wrong input \Rightarrow AND pebbled

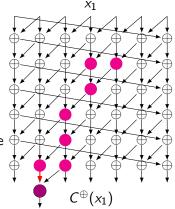


 C^{\oplus} ...tower graph of depth *d* Implement gates as XOR $\Rightarrow C^{\oplus}(x_0) \neq C^{\oplus}(x_1)$

AND gates are asymmetric w.r.t. input

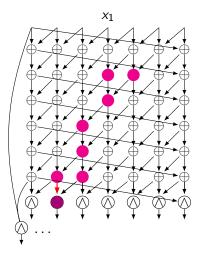
 \rightarrow use them as **control gates**: wrong input \Rightarrow AND pebbled

Pebbling lower bound: Placing a pebble on a gate on layer *d* requires *d* pebbles $\Rightarrow (\tilde{C}, \tilde{x}_1)$ is bad w.r.t. x_0 $\Rightarrow \mathcal{A}$ breaks the garbling scheme



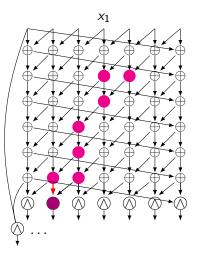
AND gate for each input and XOR gate

- ⇒ whenever a gate evaluates wrong: corresponding AND gate pebbled
- \Rightarrow bad configuration



 AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong: corresponding AND gate pebbled
⇒ bad configuration

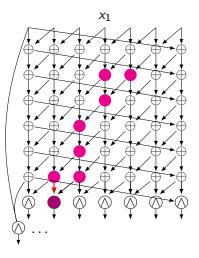
Reduction needs to "place" d-1 pebbles, and guess output of these gates correctly



 AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong: corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to "place" d-1 pebbles, and guess output of these gates correctly

For any subset S of d gates: $\exists S' \subset S$, $|S'| = \sqrt{d}$: output bits of S' independent \Rightarrow Reduction succeeds w.p. $\leq 1/2^{\sqrt{d}}$

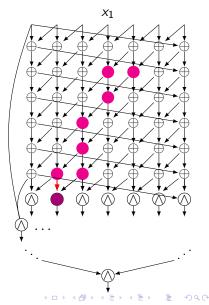


AND gate for each input and XOR gate ⇒ whenever a gate evaluates wrong: corresponding AND gate pebbled ⇒ bad configuration

Reduction needs to "place" d-1 pebbles, and guess output of these gates correctly

For any subset S of d gates: $\exists S' \subset S$, $|S'| = \sqrt{d}$: output bits of S' independent \Rightarrow Reduction succeeds w.p. $\leq 1/2^{\sqrt{d}}$

Add binary tree of AND gates \Rightarrow constant output 0



 $\begin{array}{l} \mathsf{SKE}\,\varepsilon\text{-}\mathsf{IND}\text{-}\mathsf{CPA}\,\,\mathsf{secure}\,\,\Rightarrow\,\,\mathsf{Yao's}\,\,\mathsf{scheme}\,\,\varepsilon'\text{-}\mathsf{secure}\\ \mathsf{JW16:}\,\,\varepsilon'/\varepsilon\leq 2^{O(D)}\\ \mathsf{Our}\,\,\mathsf{work:}\,\,\varepsilon'/\varepsilon\geq 2^{\Omega(\sqrt{D})}\qquad (D\,\ldots\,\mathsf{depth}\,\,\mathsf{of}\,\,\mathsf{the}\,\,\mathsf{circuit}) \end{array}$

More details and precise proofs: https://eprint.iacr.org/2021/945.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\begin{array}{l} \mathsf{SKE}\,\varepsilon\text{-IND-CPA secure} \ \Rightarrow \ \mathsf{Yao's \ scheme} \ \varepsilon'\text{-secure} \\ \mathsf{JW16:} \ \varepsilon'/\varepsilon \leq 2^{O(D)} \\ \mathsf{Our \ work:} \ \varepsilon'/\varepsilon \geq 2^{\Omega(\sqrt{D})} \qquad (D \ \dots \text{depth of the circuit}) \end{array}$

More details and precise proofs: https://eprint.iacr.org/2021/945.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open Problems:

• Is it possible to close the gap?

 $\begin{array}{l} \mathsf{SKE}\,\varepsilon\text{-IND-CPA secure} \ \Rightarrow \ \mathsf{Yao's \ scheme} \ \varepsilon'\text{-secure} \\ \mathsf{JW16:} \ \varepsilon'/\varepsilon \leq 2^{O(D)} \\ \mathsf{Our \ work:} \ \varepsilon'/\varepsilon \geq 2^{\Omega(\sqrt{D})} \qquad (D \ \dots \text{depth of the circuit}) \end{array}$

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

- Is it possible to close the gap?
- Can we obtain stronger lower bounds for Yao's original construction, where the output mapping is sent in the *offline* phase? (AIKW13: lower bound for simulatability for circuits w. large output, KKP21: upper bound for indistinguishability for small treewidth.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\begin{array}{l} \mathsf{SKE}\,\varepsilon\text{-IND-CPA secure} \ \Rightarrow \ \mathsf{Yao's \ scheme} \ \varepsilon'\text{-secure} \\ \mathsf{JW16:} \ \varepsilon'/\varepsilon \leq 2^{O(D)} \\ \mathsf{Our \ work:} \ \varepsilon'/\varepsilon \geq 2^{\Omega(\sqrt{D})} \qquad (D \ \dots \text{depth of the circuit}) \end{array}$

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

- Is it possible to close the gap?
- Can we obtain stronger lower bounds for Yao's original construction, where the output mapping is sent in the *offline* phase? (AIKW13: lower bound for simulatability for circuits w. large output, KKP21: upper bound for indistinguishability for small treewidth.)
- Can we turn this lower bound into a counter example? Under which assumptions?

 $\begin{array}{l} \mathsf{SKE}\,\varepsilon\text{-IND-CPA secure} \ \Rightarrow \ \mathsf{Yao's \ scheme} \ \varepsilon'\text{-secure} \\ \mathsf{JW16:} \ \varepsilon'/\varepsilon \leq 2^{O(D)} \\ \mathsf{Our \ work:} \ \varepsilon'/\varepsilon \geq 2^{\Omega(\sqrt{D})} \qquad (D \ \dots \text{depth of the circuit}) \end{array}$

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

- Is it possible to close the gap?
- Can we obtain stronger lower bounds for Yao's original construction, where the output mapping is sent in the *offline* phase? (AIKW13: lower bound for simulatability for circuits w. large output, KKP21: upper bound for indistinguishability for small treewidth.)
- Can we turn this lower bound into a counter example? Under which assumptions?
- Can we use similar ideas for other constructions of garbling or even other cryptographic primitives?