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Security of Yao’s Garbling

LP09: selective security proof (input known ahead of time)

⇒ adaptive security via randomly guessing the input of length n:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2n · ε-secure

JW16: adaptive security proof for circuits of depth D:

SKE ε-IND-CPA secure ⇒ Yao’s scheme 2D · ε-secure

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).
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Discussion of our Results

Our results

only apply to Yao’s construction, we do not prove a separation of
garbled circuits from one-way functions

HJO+16: adaptively secure garbling from one-way functions using
“somewhere equivocal” encryption
(online complexity increases with the pebble complexity of the circuit)

hold even for indistinguishability (a weaker security notion than
simulatability) and a variant of Yao (JW16) where the output map
is sent online

AIKW13: Yao’s original scheme is not adaptively simulatable (for
circuits with large output)
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Proof Idea

Theorem (Our work)

Any black-box proof of adaptive indistinguishability for Yao’s garbling
scheme for circuits with n-bit input, 1-bit output, and depth D ≤ 2n from

an IND-CPA secure SKE incurs a security loss of 2Ω(
√
D).

Define oracles F and A such that

F = (Gen,Enc,Dec) is an ideal SKE scheme

A is an (inefficient) adversary breaking Yao’s scheme, but “not too
helpful” in breaking F .



Proof Idea: The Adversary A



Proof Idea: The Adversary A



Proof Idea: The Adversary A



Proof Idea: The good Predicate

Given (C̃ , x̃b), A extracts a pebble configuration P on C :

Check (via brute-force) each garbling table in C̃ , if incorrect (w.r.t.
x̃b, x0) assign a pebble.

Consider the following pebble game:

In each step can place/remove a pebble on a node, if at least one of
its parents carries a pebble.
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Proof Idea: A is “not too useful”

A[c∗]: punctured adversary, IND-CPA challenge ciphertext c∗ hardcoded
and never decrypted

→ not useful for any reduction.

Can only distinguish A[c∗] from A if P ← A good and P∗ ← A[c∗] bad.

Lemma

P and P∗ differ in at most one pebbling step.

→ P contains d − 1 pebbles (by definition of good)

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.
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Proof Idea: Establishing the Lemma

Lemma (Unlikely to reach a threshold configuration)

For any C̃ the probability (over uniformly random x0) that there exists x̃b
such that P good and P∗ bad is small.

P contains many pebbles.

The reduction needs to correctly guess the output of pebbled gates
during evaluation C (x0).

To guarantee these properties, define C such that

- C has high pebbling complexity d = Θ(D),

- contains a block of XOR gates, which maintains high entropy,
pebbles on this block correspond to guessing x0,

- contains subsequent AND gates as “control” mechanism,
pebbles on these gates mean that some guess was incorrect.
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Proof Idea: The Circuit C

C⊕. . . tower graph of depth d

Implement gates as XOR
⇒ C⊕(x0) 6= C⊕(x1)

AND gates are asymmetric w.r.t. input
→ use them as control gates:

wrong input ⇒ AND pebbled

Pebbling lower bound: Placing a pebble
on a gate on layer d requires d pebbles
⇒ (C̃ , x̃1) is bad w.r.t. x0
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Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧



Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧



Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧



Proof Idea: The Circuit C

AND gate for each input and XOR gate
⇒ whenever a gate evaluates wrong:

corresponding AND gate pebbled
⇒ bad configuration

Reduction needs to “place” d−1 pebbles,
and guess output of these gates correctly

For any subset S of d gates: ∃S ′ ⊂ S ,
|S ′| =

√
d : output bits of S ′ independent

⇒ Reduction succeeds w.p. ≤ 1/2
√
d

Add binary tree of AND gates
⇒ constant output 0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

x1

∧∧ ∧ ∧ ∧ ∧ ∧

∧ . . .

. . .
...

∧



Conclusion

SKE ε-IND-CPA secure ⇒ Yao’s scheme ε′-secure

JW16: ε′/ε ≤ 2O(D)

Our work: ε′/ε ≥ 2Ω(
√
D) (D . . . depth of the circuit)

More details and precise proofs: https://eprint.iacr.org/2021/945.

Open Problems:

Is it possible to close the gap?

Can we obtain stronger lower bounds for Yao’s original construction,
where the output mapping is sent in the offline phase?
(AIKW13: lower bound for simulatability for circuits w. large output,
KKP21: upper bound for indistinguishability for small treewidth.)

Can we turn this lower bound into a counter example? Under which
assumptions?

Can we use similar ideas for other constructions of garbling or even
other cryptographic primitives?

https://eprint.iacr.org/2021/945
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